중등부 1번. 신기한 수 Subtask 2 (100점) 숫자 $N$ 이 주어지면, 해당 수의 일의 자리에 적힌 수는 $N \mod 10$ 이 된다. 이후 숫자를 10으로 나눠주면, 십의 자리, 백의 자리… 에 있던 수들이 모두 일의 자리, 십의 자리로 움직인다. 고로, 이를 반복하면 $O(\log N)$ (입력에서는 최대 8번) 의 단순 연산으로 $N$의 자릿수 합을 알 수 있다. 어떠한 수 $A$ 가 어떠한 수 $B$ 로 나누어 떨어지는 것은, $A$ 를 $B$ 로 나눈 나머지가 0이라는 뜻이니, C++ 나머지 연산자를 사용하여 판별할 수 있다. 중등부 2번. 개구리 점프 Subtask 1 (19점) 어떠한 두 선분 $p, q$ 사이를 오갈 수 있다는 것은, 특정한 좌표 $x$ 가 존재해서, $p, q..
계산 이론은 전산학의 근간을 이루며, 컴퓨터를 사용하는 모든 학문의 수학적 분석에 있어서 중요한 역할을 한다. 계산 이론 분야의 $P = NP$ 난제는 컴퓨터 과학의 거의 모든 분야를 관통하는 중요한 문제이고. $P = NP$ 난제의 여러 중요한 실용적 의미와 그 악명높음은 이미 대중적으로도 잘 알려져 있다. 계산 이론의 내용은 전산학의 어떠한 부분을 다루더라도 만나게 되는 경우가 많지만, 대부분의 내용은 튜링 머신과 같은 복잡한 개념을 바탕으로 정의된다. 이러한 특징 때문에, 계산 이론의 많은 내용은 잘 알려져 있으면서도 제대로 알고 있는 사람은 그렇게 많지 않은 경우가 많다. NP 시간 복잡도가 Non-Polynomial의 줄임말이라는 유명한 오해가 대표적인 사례이다. 튜링 머신과 같은 개념은 매우 ..

A. Strange DeviceSubtask 1 (10점)문제에 적힌 대로 모든 순서쌍을 나열한 후, 정렬하여 서로 다른 순서쌍의 개수를 세자.Subtask 4/5 (20점)고정된 $0 \le y 각각의 구간 $[L_i, R_i]$ 에 대해서, 가능한 $q$ 의 구간을 계산할 수 있다. 가능한 $q$ 의 구간을 계산했다면, 가능한 $q \mod T$ 의 구간 역시 알 수 있다. (원형으로 넘어가는 것을 주의하도록 하자.) 결국 각 $y$ 에 대해서 가능한 $x$ 의 개수는 가능한 $q \mod T$ 의 개수랑 동일하니, 이러한 구간을 전부 추린 후, 구간 합집합을 $O(N \log N)$ 시간에 계산하면 $O(BN \log N)$ 에 문제를 해결할 수 있다.$N$ 개의 구간의 합집합을 구하는 것은, $[..
- Total
- Today
- Yesterday